在公務員錄用考試行政職業能力測驗考試中數量關系部分的六大基礎數列:
一、常數數列
由一個固定的常數構成的數列叫做常數數列。
【例1】3,3,3,3,3,3,3,3,3,…
二、等差數列
相鄰兩項之差(后項減去前項)等于定值的數列叫做等差數列。
【例2】3,5,7,9,11,13,15,17,…
三、等比數列
相鄰兩項之比(后項除以前項)等于定值的數列叫做等比數列。
【例3】3,6,12,24,48,96,192,…
備考要點
“等差數列”與“等比數列”的基本概念在考試當中基本沒有意義,對于考生來說,重要的是以下兩點:
(1)快速地判斷出某個中間數列是等差數列還是等比數列,抑或兩者皆不是;
(2)迅速將數列對應規律的下一項計算出來。
四、質數型數列
質數數列:由質數構成的數列叫做質數數列。
【例4】2,3,5,7,11,13,17,19,…
合數數列:由合數構成的數列叫做合數數列。
【例5】4,6,8,9,10,12,14,15,…
質數基本概念
只有1和它本身兩個約數的自然數叫做質數;除了1和它本身之外還有其他約數的自然數叫做合數。注意:1既不是質數,也不是合數。
五、周期數列
自某一項開始重復出現前面相同(相似)項的數列叫做周期數列。
【例6】1,3,7,1,3,7,…
【例7】1,7,1,7,1,7,…
【例8】1,3,7,-1,-3,-7,…
周期數列基本原則
一般來說,數字推理當中的周期數列(包括未知項)至少應出現兩個“3-循環節”,或者三個“2-循環節”,此時其周期規律才比較明顯。故在一般情況下,要判斷一個數列有無周期規律,加上未知項,至少要有六項。
項數過少的數列稱其為“周期數列”過于牽強,此時這種數列如果還有其他規律存在,則優先考慮其他規律。
六、簡單遞推數列
數列當中每一項等于其前兩項的和、差、積或者商。
【例9】1,1,2,3,5,8,13,…(簡單遞推和數列)
【例10】37,23,14,9,5,4,1,…(簡單遞推差數列)
【例11】2,3,6,18,108,1944,…(簡單遞推積數列)
【例12】256,32,8,4,2,2,1,2,…(簡單遞推商數列)
在公務員考試中,以上基礎數列都相對比較簡單,直接考查以上各種基礎數列的題目也并不是很多,但各位考生一定要注意以下兩點:
1.在規律不變的前提下,可能只是由于數字稍加變化,規律就可能變得模糊;
2.作為復雜數列的中間數列,大家對基礎數列一定要“爛熟”。
